105 research outputs found

    Online Matching with Stochastic Rewards: Optimal Competitive Ratio via Path Based Formulation

    Full text link
    The problem of online matching with stochastic rewards is a generalization of the online bipartite matching problem where each edge has a probability of success. When a match is made it succeeds with the probability of the corresponding edge. Introducing this model, Mehta and Panigrahi (FOCS 2012) focused on the special case of identical edge probabilities. Comparing against a deterministic offline LP, they showed that the Ranking algorithm of Karp et al. (STOC 1990) is 0.534 competitive and proposed a new online algorithm with an improved guarantee of 0.5670.567 for vanishingly small probabilities. For the case of vanishingly small but heterogeneous probabilities Mehta et al. (SODA 2015), gave a 0.534 competitive algorithm against the same LP benchmark. For the more general vertex-weighted version of the problem, to the best of our knowledge, no results being 1/21/2 were previously known even for identical probabilities. We focus on the vertex-weighted version and give two improvements. First, we show that a natural generalization of the Perturbed-Greedy algorithm of Aggarwal et al. (SODA 2011), is (1βˆ’1/e)(1-1/e) competitive when probabilities decompose as a product of two factors, one corresponding to each vertex of the edge. This is the best achievable guarantee as it includes the case of identical probabilities and in particular, the classical online bipartite matching problem. Second, we give a deterministic 0.5960.596 competitive algorithm for the previously well studied case of fully heterogeneous but vanishingly small edge probabilities. A key contribution of our approach is the use of novel path-based analysis. This allows us to compare against the natural benchmarks of adaptive offline algorithms that know the sequence of arrivals and the edge probabilities in advance, but not the outcomes of potential matches.Comment: Preliminary version in EC 202

    On the approximability of adjustable robust convex optimization under uncertainty

    Get PDF
    In this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realizations of uncertain parameters, while an optimal static solution can be computed efficiently in most cases if the corresponding deterministic problem is tractable. The performance of the optimal static robust solution is related to a fundamental geometric property, namely, the symmetry of the uncertainty set. Our work allows for the constraint and objective function coefficients to be uncertain and for the constraints and objective functions to be convex, thereby providing significant extensions of the results in Bertsimas and Goyal (Math Oper Res 35:284–305, 2010) and Bertsimas et al. (Math Oper Res 36: 24–54, 2011b) where only linear objective and linear constraints were considered. The models in this paper encompass a wide variety of problems in revenue management, resource allocation under uncertainty, scheduling problems with uncertain processing times, semidefinite optimization among many others. To the best of our knowledge, these are the first approximation bounds for adjustable robust convex optimization problems in such generality.National Science Foundation (U.S.) (NSF Grant CMMI-1201116

    Online Allocation of Reusable Resources via Algorithms Guided by Fluid Approximations

    Full text link
    We consider the problem of online allocation (matching and assortments) of reusable resources where customers arrive sequentially in an adversarial fashion and allocated resources are used or rented for a stochastic duration that is drawn independently from known distributions. Focusing on the case of large inventory, we give an algorithm that is (1βˆ’1/e)(1-1/e) competitive for general usage distributions. At the heart of our result is the notion of a relaxed online algorithm that is only subjected to fluid approximations of the stochastic elements in the problem. The output of this algorithm serves as a guide for the final algorithm. This leads to a principled approach for seamlessly addressing stochastic elements (such as reusability, customer choice, and combinations thereof) in online resource allocation problems, that may be useful more broadly
    • …
    corecore